Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(33): 22918-22927, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520090

RESUMO

Sustainable bimetallic nanoparticles (NPs) have attracted particular attention in the past decade. However, the efficiency and environmental concerns are associated with their synthesis and properties optimization. We report herein biosynthesis of bimetallic ZnO@SeO NPs based on green and ecofriendly methods using pomegranate peel extract (PPE). Pyrochemical ultraviolet-visible (UV-vis), Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy as well as TEM and EDX supported successful synthesis. Antibacterial, antifungal, and cytotoxic activities were indicative of biological worth of sustainable bimetallic ZnO@SeO NPs, exhibiting antibacterial activity compared to monometallic ZnO and SeO NPs. The values of Minimum Inhibitory Concentration (MIC) of bimetallic ZnO@SeO NPs toward E. coli, P. aeruginosa, B. subtilis and S. aureus were 3.9, 15.62, 3.9 and 7.81 µg ml-1, respectively. Likewise, a promising antifungal activity against Candida albicans, Aspergillus flavus, A. niger and A. fumigatus was achieved (MICs: 31.25, 1.95, 15.62 and 15.62 µg ml-1, respectively). The cytotoxicity results suggest that bimetallic ZnO@SeO NPs are non-toxic and biomedically safe, evidenced by in vitro anticancer activity against human liver carcinoma (Hep-G2) cell line (with a half-maximal inhibitory concentration (IC50) > 71 µg ml-1). The bimetallic ZnO@SeO NPs successfully biosynthesized using PPE showed a high potential for biomedical engineering.

2.
Artif Cells Nanomed Biotechnol ; 50(1): 260-274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191138

RESUMO

Due to the misuse of antibiotics, the multidrug-resistant Staphylococcus aureus (MDRSA) has caused serious infections and become more difficult to deal with. Here we propose to synthesise copper oxide nanoparticles (CuO-NPs) using a cell-free filter of Streptomyces rochei to enhance antibiotics activity against (MDRSA) and kill them. Characterisation of CuO-NPs using ultraviolet, dynamic light scattering, zeta potential, transmission electron microscopic (TEM), and X-ray diffraction, were investigated. The antibacterial action of the CuO-NPs was tested against standard strain and clinical isolates using the agar well diffusion method and the microdilution assay. The results showed the monodispersed spherical shape CuO-NPs with a mean diameter of 10.7 nm and were found to be active against (MDRSA). By a combination of CuO-NPs with different antibiotics, the highest synergistic effect was observed with cefoxitin, the minimum inhibitory concentration (MIC) was reduced to 6.5 for CuO-NPs, and 19.5 for cefoxitin. Time-kill assay showed the highest reduction in log10 colony-forming unit (CFU)/ml of initial inoculum of MRSA after 24 h. The HFB-4 cells cultured in the presence of CuO-NPs showed normal morphology with 100% viability at 8 µg/ml. TEM showed that combination (1/4 MIC cefoxitin +1/16 MIC CuO-NPs) highly damages bacterial cells' shape. The biosynthesis CuO-NPs showed antibacterial activity against S. aureus suggesting a promising alternative in clinical.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Ágar/farmacologia , Antibacterianos/farmacologia , Cefoxitina/farmacologia , Cobre/farmacologia , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Staphylococcus aureus
3.
Plants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34579293

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are regarded as one of the most promising kinds of materials in a variety of fields, including agriculture. Therefore, this study aimed to biosynthesize and characterize ZnO-NPs and evaluate their different biological activities. Seven isolates of actinomycetes were obtained and screened for ZnO-NPs synthesis. The isolate MK-104 was chosen and identified as the Streptomyces plicatus MK-104 strain. The biosynthesized ZnO-NPs exhibited an absorbance peak at 350 nm and were spherical in shape with an average size of 21.72 ± 4.27 nm under TEM. XRD and DLS methods confirmed these results. The biosynthesized ZnO-NPs demonstrated activity against plant pathogenic microbes such as Erwinia amylovora, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Fusarium moniliform and Alternaria alternata, with MIC values ranging from 15.6 to 500 µg/mL. Furthermore, ZnO-NPs had a significant effect on Meloidogyne incognita, with death percentages of 88.2, 93.4 and 96.72% after 24, 48 and 72 h of exposure, respectively. Vicia faba seeds were treated with five concentrations of ZnO-NPs (12.5, 25, 50, 100 and 200 µg/mL). Low-moderate ZnO-NP concentrations (12.5-50 µg/mL) were shown to promote seed germination and seedling development, while the mitotic index (MI) decreased as the dosage of ZnO-NPs increased. Micronuclei (MNs) and the chromosomal abnormality index increased as well.

4.
Biotechnol Rep (Amst) ; 24: e00386, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763199

RESUMO

Application of thermostable alkaline protease to control the harmful nematodes was investigated in the current study. A total of 14 proteolytic actinomycetes were isolated from Egyptian harsh environments. Out of them, isolate G550 exhibited the highest proteolytic activity (528.9 U/ml). Protease from isolate G550 exhibited high nematicidal activity against M. incognita under laboratory conditions and caused hydrolysis of J2S cuticle. This isolate was identified using molecular techniques and deposited in GenBank under name of Saccharomonospora viridis strain Hw G550 with accession number: MF152631. The G550 protease was extracted, characterized and applied under greenhouse conditions as nematicidal agent. This enzyme exhibited maximum activity and stability at alkaline pH (8) and thermal conditions (50-60 °C). Also, the results showed that, all treatments using protease caused a significant decrease in nematode reproduction and increasing in the plant properties. Finally, the thermo alkaliphilic protease could be used as bio-control agent against RKN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...